skip to main content


Search for: All records

Creators/Authors contains: "Fors, Brett P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cationic reversible addition–fragmentation chain transfer (RAFT) polymerizations have permitted the controlled polymerization of vinyl ethers and select styrenics with predictable molar masses and easily modified thiocarbonylthio chain ends. However, most cationic RAFT systems require inert reaction conditions with highly purified reagents and low temperatures. Our groups recently developed a living cationic polymerization that does not require these rigorous conditions by utilizing a strong organic acid (pentacarbomethoxycyclopentadiene (PCCP)) and a hydrogen bond donor. By combining our PCCP acid promoted polymerization with a chain transfer agent, we have designed a tolerant cationic RAFT system that can be performed neat, open to the air, and at room temperature. Additionally, this system allows us to utilize catalytic amounts of the PCCP acid to furnish polymers with chain end functionality that can be easily isolated and further manipulated to make functional materials. 
    more » « less
  2. Abstract

    Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron‐rich C−H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether‐based polyurethane in a green solvent. This work demonstrates a facile, electrochemically‐driven route to degrade polymers containing ether functionalities.

     
    more » « less
  3. Abstract

    Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron‐rich C−H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether‐based polyurethane in a green solvent. This work demonstrates a facile, electrochemically‐driven route to degrade polymers containing ether functionalities.

     
    more » « less
  4. Abstract

    Polyurethanes (PUs) are a class of materials usually synthesized from isocyanates, diols, and water. Water is essential for producing carbon dioxide (CO2) which is used for the self‐blowing of the foams. Due to safety concerns with the production of isocyanates, alternative chemistries have been evaluated and cyclic carbonate systems have shown great promise. In a recent advancement by Bourguignon, Grignard, and Detrembleur, a cyclic carbonate and diamine system is capable of generating CO2for self‐blowing through hydrolysis of the carbonate‐based monomer. The authors demonstrate that with a simple variation of the diamine monomer a wide range of physical and thermo‐mechanical properties were achievable. This work represents a significant step towards safer and more environmentally friendly PUs.

     
    more » « less
  5. Abstract

    Polyurethanes (PUs) are a class of materials usually synthesized from isocyanates, diols, and water. Water is essential for producing carbon dioxide (CO2) which is used for the self‐blowing of the foams. Due to safety concerns with the production of isocyanates, alternative chemistries have been evaluated and cyclic carbonate systems have shown great promise. In a recent advancement by Bourguignon, Grignard, and Detrembleur, a cyclic carbonate and diamine system is capable of generating CO2for self‐blowing through hydrolysis of the carbonate‐based monomer. The authors demonstrate that with a simple variation of the diamine monomer a wide range of physical and thermo‐mechanical properties were achievable. This work represents a significant step towards safer and more environmentally friendly PUs.

     
    more » « less